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I n this article, we intended to examine the Kantowski-Sach string cosmological model in the electromagnetic field
with £ (R, T) theory of gravity, where R shows Ricci Scalar and trace T shows stress energy tensor. At this time we
proposed mixed energy momentum tensor as T, = S, + Ery where E, shows energy momentum tensor in the

electromagnetic field and Sy, shows energy momentum tensor in the string cloud. In this condition, we have to study
the stability of the cosmological model and we find the exact solution in two cases of field equation in f (R, T) theory.
We ensure the universe is stable or not. Some physical properties are discussed in detail in the investigated model.
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1. Introduction

"As por Riess ot al. (1998), the discovery of the present
universe is expanding and accelerating in modem
cosmology. As per Perlmutter et al. {1999), in the high
red-shift  supernovac  experiments,  the  universe
acceleration and expansion have been authenticated in
late time. As per Bennet et al. (2003), in the large and
negative pressure, our universe is dominated by strange
cosmic fluid. As Per Brans & Dicke (1961); Saez &
Ballester  (1986), cosmologists are  operational — in
alternative theories of gravitation. Kantowski-Sachs
(1966} gave solutions for dust space time, Collins (1977)
for perfect fluid, Barrow et al. {1997) for scalar ficlds,
Gergely (1999) for anisotropic fluid, and Gergely (2002)
for exotic fluid models. Tikekar et al. (1992); Thorne
(1967} and Roy ct al. (1978) arc also studied the
magnetic field of string cosmological models. Xing-Xang
(2004), in the existence of Bulk Viscosity & magnetic
field, investigated symmetric (LR3) Bianchi first type
cosmological model. Wang (2005), In the Kantowski-
Sachs space time, analyzed string cosmological models
of bulk viscosity As per Takahashi (2010), in matter
Lagrangian density Ly, was anticipated the modified f (R)
thcory of gravity, investigated an explicit coupling of
Ricci scalar R, After that, Harko ot al. (2011), the Ricci
scalar R and the stress energy tensor T, proposed f (R, T)
modified theories of gravitation. Recently, In Lyra’s
geametry, Chaubey (2012) analyzed the Kantowski-

Sachs model ficld in the perfect fluid. Adhav (2012) and
Reddy et al. (2012), in the f(R, T) theory of gravity, they
studied different cosmological models. Kantowski-Sachs
cosmological modal contains two symmetry propertics
first is spherical symmetry and the second is invariance
under spatial translations. In the f(R} theory of gravity,
Katore et al. (2015) investigated the Stability of the
Kaluza—Klein cosmological model with holographic dark
energy. Katore et al. (2016), investigated the FRW metric
with the constant deceleration parameter and analyzed
that damain walls vanished at a large time, in the early
cra the universe could exist and the universe is stable”.

Therefore, we inspired on top of investigations and
discussion. We discuss the physical stahility string
cosmological  model  of  Kantowski-Sach  in the
electromagnetic field. We obtain the field equation in
(R, T} thcory and found the exact solution in two ways.
First, we consider the relation A =B". Sccond, we
consider the deceleration parameter for Kantowski-Sach
is constant.

This paper is structured in six sections. In the first
section, we discuss the introduction. Second Section, we
show the dynamical field cquations in #R, T) theory of
gravitation. Third Section, we show the Kantowski-Sach
string cosmalogical model. Fourth Section, we discuss
the solution of the related field equations in two ways.
First, we consider the relation A =B". Second, we
consider the deceleration parameter for Kantowski-5ach
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constant. Fifth Section, we discuss the stability of the
universe and the result of its physical properties. Sixth
Section contains the conclusion.

Where p show the cloud string rest energy density of the
particles, A show the string tension density of, u; show
the four velocities of cloud string and x; show the
direction of anisotropy. The magnetic field is used along
@ direction in the commoving coordinates. So the
electromagnetic field tensor Fj; is Fy, as a non-vanishing
component. We taken F;, = constant = J (say) = F,;

2. F(R, T) gravitational theory:

Harko et al. (2007) given f (R, T) modified gravitational
theory model. In the variational principle type Einstein

field equation as defined:

F12 — glocglﬁ FO(B (9)
_1 4

3 16"f\/_g(f(R' T+ Ln)dx M The Electromagnetic energy momentum tensor:
In the f (R, T) function, R shows Ricci scalar and T 1 1
shows energy momentum tensor. They have given three T = 4 [ —FisFjp 8% + 2 8iiFsp F*9] (10)
classes models the first class is f(R,T) = 2f(T) + R, the  ere, Fy; shows the electromagnetic field tensor as:
second class is f(R, T) = f,(T) + f;(R), and the third class
is f(R,T) = £,(R)f3(T) + f,(R). In General, the first class  Fij = @ij — @i an
has more attention but we have studied the second  gq the Maxwell equation
cosmological consequences class.

Fijk + Fjki + Frij =0 (12)

f(R, T) = £, (R) + £,(T) 2)

Here, the field equation in the gravitational field is
defined as:

' 1
f; (MR —ZF(R)gy + (&5 @ -Viv))

Here F;, =] (constant) and other all components are

zero. Eq" 8 and 10 have the non-vanishing components
of St and Eg, found as:

STl = ST% = O'STi = —A,
, ' ' 1
fi(R) = 8aTy; + £, (T + (P H(T) + 5 £,(T))g; B S = —p (13)
we assume the functions f,(T) = 1, T &f;(R) =R and Eot = oz = —Fos = — Eou W (14)
M # L, after putting the value in eq"(2) we got f(R,T) = :]1 e ield T Te 8mA?B?
MR+ 2,T. After putting this condition then the eq"(3) The Einstein tield equation as
found as: i —pi_1lg
ound as G, = Rj — &R (15)
1
MRy = Egiile + 7‘1(gii [ —ViV]-) = 8Ty + 22Ty + Putting the eq" (5) we get
1
WP+ =0T ) g (4) . A2)T! ;
(2 22 ) ij G]! =(8n;2)l+i_2(P+§)81i (16)
Assuming (gi]- B —ViV]-)kl = 0, we obtain ! !
. - N . The Field eq" (6) for the metric is as follows:
Rij_ERgij:( . 2)Tij+f(P+5T)gij (5) B | 28 ER 2 (8r+h) —(P—&—E) A (17)
. . . B? B B? 8nA?B? )y 2 2] N
3. Kantowski-Sachs Metric equation: o )
. o . A A B _ _F (8"”‘2)_(1:)_5_2)7“_2 (18)
The Kantowski-Sachs metric is defined as: A ' AB B 8rAB? 1, 2 2/
ds? = —dr?A? — (d6? + Sin?6 dg?) B? + dt? 6) A AB B _ (7\ _ )(8n+xz)
. . A ' AB ' B 8rA?BZ) 1,
Here A and B are only time functions.
- (p _2 E) de (19)
Here the matter's energy momentum tensor is defined 2 2/
as: B2 2B 1 ]2 (8n+Ay)
— 4+ = = p— AO% T A2)
Ty = Sy, +Er, (7) B AB B ( 8nA? BZ) Y
—(p=r_r\ 2
(P=3-3)7 (20

Where St shows the cloud string energy momentum
tensor and Er, shows the electromagnetic field energy

momentum tensor. The cloud string energy momentum
tensor is defined as:

STi]. = puyy — AXXj (8)

Here uyu = —x;x! = =1, xu; =0

11

4. Solution of the field equation:
4.1 Case I

In this section, the solution of the field equations 24, 25,
26, and 27 are found in the presence of a cosmic string
in the electromagnetic field. Here four equations contain
seven unknowns as A, B, A;, A,, A, P, and p. To find the
complete solution to the system we required one extra
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condition.  Therefore ~we assume a relation
A= B"
Here we took n as an arbitrary constant
Subtract eq" (18) from eq" (19) we get
(8n +1z) J oy _
M ()\_BnAsz _SnAZBZ) =0
2J?
T BrAB? (21)
Subtract eq" (17) from eq" (20) we get
2AB 2B _ (8n+h) _ P
AB B (p 87:A2B2) (22)
Subtract eq” (17) from eq" (18) we get
) o
21z é+£+—=0 (23)
B B B A AB
Substitute A = B™ we get
1
—(11+1)— HBZ =0
We can write as
b 2 — —2n-2
B (n2 5+ DB
This equation has a first integral form of B as
—2n-21-1/2 _ _
[l + DB 7/2 dB = £(t~) (24)

Here D & [ are the integration constants. This equation
cannot be solved for any values of n. here we can find
the exact solution only forn = 0,-2& —3/2.

For n = 0

Jl=+ DB2|"Y/2dB = +(t—)
After integration we get
B=D-(t— +k?"?

Here k is an arbitrary constant.

Therefore, this model is a contracting model of the
universe so we have no physical interest.

For n = -2
f[§+ DB2]"/2dB = +(t—)

After integration we get B = \/3% Sinh[{/D(t—)]

Therefore, this model is a contracting model of the
universe so we have no physical interest.

Forn = —-3/2
f[§+ DB]"Y/2dB = +(t—)

After integration we get

B=[; (t=)* - 5

Here, A= B" putn = —3/2

(25)

[ (t=) - ] 32
Putting the values of A and B in ds?, we get

4

2 22 i N2 A y-34.2_ R N2
ds? = dt?—[7 (t—)2 - = ]7%dr? = [> (t—)
%]Z(de2 + Sin20 d¢?)

So it is clear that the eq" (24) cannot be solved for any
values of n and D in cases I, Il, and Ill. So, we have
worked on onlyn = —3/2.

Physical Properties
4.1.1 The tensor density of the cloud string as:
2J% 2J?

A= A=
87r[—(t -)?- ] ‘[ (=)= ]2

8nAZB2

_ED iyl A
A= 4m [4 (t=) SD]
Therefore, if ] # 0 then the tensor density of the cloud
string tends to be constant at t - and if ] = 0 then the
tensor density is zero.

(27)

4.1.2 Rest energy density:
From the eq" (22)

2AB 2B ( 2J? ) (8w +1y)
AB B 8nAZB? M
B? 2B (8n+kz)
—3=——= - A
i (p=N——=

Substitute the value of B from the equation (25) we get

3D? 2

M ) D(t-) n E[E

P= "t Btoz-2] 0 (-t 4ne
2_ 4

)=l

Therefore, the Rest of energy density of the cloud string
tends to be constant at t —» and if we have taken ), =
1,.,=n,D=1,=1,]=1, then the Rest energy
density of cloud string tends to infinite as t is large.

(t—
(28)

Graph- Rest of Energy Density of Cloud String
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4.1.3 Pressure P:
From the eq" (17)
B2 2B 1, (Brdde) (p h_p) e
B2+B+B2_)\' M (P 2 z)x1

Substitute the values of B from (25), A from (27), and p

from (28) we get P= _2(8:1+ ) [[%(t])-()z_—),)in]
%(t—)2 (8n+3)z) J2 D 2 4

[?(t—)z-%]z] * A2 E[Z (t=)"- 5] -

w[ o, Feore

Therefore, the Pressure of the cloud string tends to be
constant at t— and if we have taken A =1,), =
n,D=1, =1,] =1 then the Pressure of the cloud
string tends to infinite as t is large.

Graph- Pressure of the Cloud String
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4.1.4 Spatial Volume:
V = \/—g

= ABZsin 6

= B'/?sin 6 (30)

— Ry A2 g
V= [4 (t=) SD] sin 6
Att =

4
V =sin0 [ —]/2
sin 9 [ 5D]

Since 8 = m/2 then

V=[- %]1/2 = constant at t —

Therefore, the spatial volume is constant att — .
4.1.5 Expansion Tensor:

0= U+ Uy

]

2B

— *3

13

—3/2thenf= —2
2B

B
—[n =

+§] put n
(31)
1 (o)

2 (-5

Therefore, the Expansion Tensor tends to zero at t—
and tends to zero at t is large.

4.1.6  Shear Scalar:
2 _ =
o = > 0jj O
_1 k k 1
Where O-i]' = E [ui:ku u]- — Uj u]-u ] +E [ui:]- - u]':i] -
1
5 6[gy — wuy
1
o? = s Lon o' + 05, 622 + 033 033 + 0y 0™
2 _ 7 Q2
o= —0 (32)
18
2_ 7 D2(t-)?
c - D i_ 4 2
18 |- (t2)* -5

Therefore, the Shear scalar tends to zero at t — and
tends to zero at t is large.

4.1.7
vV =R?
R = V3 = (AB)'/3

Average Scale Factor:

R
Ha =E
1[A 2B 1
Ho=3[3 +5] =30 (33)
1 D (t-)
Hy=——
T (-l

Therefore, the Average Scale Factor tends to zero at
t — and tends to zero at t is large.
4.1.8 The deceleration parameter q:
RR
TR
Using R = V3 = (AB)'/3 we get

11
2

Therefore, the deceleration parameter is negative att —
and tis large.

q:

D
T ()7 -5]

[
q= —12[ SYORE +

(34)

If the deceleration parameter shows a negative value
then the model is inflated.

When

This means that the model is not isotropic.
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4. 2Casell
Solution of field equation:

In general relativity, Akarsu et al. (2012) and Berman
(1983) proposed the FRW space-time field equation
solution with linearly varying deceleration parameters.
The Hubble parameter model of the universe uses the
special law of variation as:

They have taken linearly wvarying deceleration
parameters as; '
= %z—at+m'—1,a20.m20 (36)

The universe is decelerating when the deceleration .

parameter indicates a positive sign and the universe is
accelerating when it indicates a negative sign. In the
past the cosmological observations displayed the
universe was decelerating but in the present time, the
universe is accelerating. We consider the form of
deceleration parameter as per the requirement from eq”
(47). We take a,m > 0

out-m
T
Here c; & c; are arbitrary constants. Here the model is
free from singularity because the scale factor B evolves
exponentially. So, the pressure (P) and energy density
(p) is found as:

B tanh™! (37)

2
=C; X
& p{gmz-—Zuc

Physical Properties:

4.2.1  Rest energy density:

)

2]2
81:82111-2

From the eq" (22)

B _ (p— (Bn+Xg)

(o)

Heren # + land putting B from the equation (25) we
get

ZAR 2)2

8nA2B2
(8n+%hs)
2y

P .

Ay 8(n-1)a?-8at+8e%m
(B7r+l2) (—2ccy —a?t2+2atm)?

H2 —4(n+1) 1 w-m

exp tanh™ 38
weis PP ¥ 38)
~ 3 3

|fm= \/E,C1=—1,O(=—1,A1=1,7\,22 ﬂ:,n:"E,CZx

1,] =1 then the Rest Energy density of cloud string
tends to constant at t is large.

14
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4.2.2 Pressure P:
From the eq" (17)
B2 1 (87 + ha) I by
Sof i JEE N (p..,_m__) 2
B B B Ay 2 Xy

Substitute the values of B from (25
p from (28} we get

), A from (27) and

i _(Br+3k) PP exp{ —4(n+1) _1 at-m }_
A2 4nc, 202 JmZ_2ac; JmZ=2ac;
by 6u®+8a’t—Bu?m ]—+
(-20cy —a?t2+4+2atm)?

1 -4 1 at—-m
= exp{m tanh™ m}

Ay 4(n—-1)a?®-4a®t+4a?m
(Bx +As) [(—Zucl—uztzﬁ-mtm)z ]

(39)

fm=vZ,=-La=-1h =Lk =nn=-3,c=
1,] = Tthen the Pressure of the cloud string tends to

constant at t is large.

Graph- Pressure of the Cloud String
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4.2.3  Spatial Volume:
From eq" (30)

V= BY?sin@

Vi g8 exp{ﬁ
at8 = 90

(40)

at—m

_1—
tanh m}
Therefore, the Spatial Volume is constant at t is large.
4.2.4 Expansion Tensor:

From eq" (31)

B
e

«

(41)

0 (—20cy —a?t?+2atm)?
Therefore, the Expansion Tensor tends to be zero at t is
large.

4.2.5 Average Scale Factor:

From eq" (32)

=il +2]- 1o

a
3(—2ac; —aZt2+2atm)?

Hy =

(42)

Therefore, the Average Scale factor tends to be zero at t
is large.

4.2.6 Shear Scalar:
From eq" (33)

.
o= - @2
9

2

4 o

gl= T e
9 (-2ucy —u?t?+2atm)*

(43)

Therefore, the Shear Scalar tends to be zero at t is large.

5. Result & Discussion

It is observed that the following result of this model for
two cases and plotted the graphs for a suitable choice of
constants and discuss its physical properties.

Case |

e If ] # 0then the tensor density of the cloud of

string tends to be constant at t— and if ] = 0
then the tensor density is zero.

The cloud string Rest energy density tends to be
constant at t — and infinite at t is large.

e The Pressure of the cloud of string tends to be
constant at t = and infinite at t is large.
* The Spatial Volume is constant att — and infinite

attis large.

15

The Expansion Tensor, Shear Scalar and the Average
scalar factor tends to zero at t — and tis large.

The deceleration parameter is negative att— and t is
large. Therefore, this maodel is inflated.

Case Il

The Rest of the energy density of the cloud string tends
to constant at t is large.

The Pressure of the cloud of string tends to constant at t
is large.

The Spatial Volume is constant at t is large.

The Expansion Tensor, the Shear Scalar, and the Average
scalar factor tend to zero at t is large.

Stability:

The madel stability is dependent upon the function ¢2

ap . : ,
o If the function c¢Z is greater than zero then the

model is stable otherwise the model is unstable.
Case |

Stabiity of Gosmological model

Fig. 5

Therefore, the value of the function ¢ is negative, so
this model is unstable at t is large.

Case Il

Stability of Cosmological mode!
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Therefore, the value of the function c2 is Positive, so this
model is stable at t is large.

6. Conclusion

The fundamental of Kantowski-Sach Cosmological
models are discussed earlier. In a nutshell, we have
investigated a Kantowski-Sach string cosmological
model in the electromagnetic field.

e Hubble parameter is positive from the beginning of
the cosmic evolution and is a decreasing function at

tis large. This shows the universe is only expanding.

The Universe is not isotropic in the derived model at
the present period because the ratio between the
shear scalar and Expansion Tensor does not zero at t
is large.

The energy density of matter tends to zero at t is
large in this model which is similar to the
examination of Shaikh et al. (2021). The behaviour
of the model is observed with the recent
observational certainty of cosmology.

At the initial epoch, The Universe starts with volume
zero but in the Big-Bang scenario, expands
exponentially approaching infinite volume.

The deceleration parameter of the universe is
negative at t is large; this sign shows the Universe is
accelerating expansion.

The stability of the universe plays a major role in the
string theory and the electromagnetic theory here we
discuss. This is the novelty of its work. According to the
cosmological explanations, In Case I, this cosmological
model is unstable and In Case Il, this model is stable at
time is large according to the cosmological
explanations. This is clear those cases are opposite to
each other so this is very surprising result for the special
case Il this means Akarsu et al. (2012) and Berman
(1983) condition is not correct for all types of
cosmological modals. According to the above results
case | solution is correct. This cosmological modal is
unstable. The performance of the physical parameters is
comparable to the obtained in the research paper Katore
et al. (2016). Some other techniques are also check in
future.
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